Информационный научно-популярный портал
НАУКА в РФ и за рубежом
глазами блогера (работает с 01.09.2018 просмотров 31824)

Контакты (с 11 до 19): 8-903-899-44-37 Лилия или lili@k156.ru
на главную

РФ

Институты и конференции

Международные с РФ

Зарубежные

ВСЕ НОВОСТИ

Последние добавления

Все новости
(последние 10 )

2018-11-08
Открытие древнейшей звезды "состарило" наш регион Млечного Пути на три миллиарда лет
Подробнее

2018-11-08
Спиновая сверхтекучесть при комнатной температуре
Подробнее

2018-11-07
Топологический предсказатель - поиск новых веществ ускорен в несколько раз
Подробнее

2018-11-07
Уникальное биоразнообразие дальневосточных морей
Подробнее

2018-11-06
Ученые создали клеточный препарат для сращения костей
Подробнее

2018-11-06
Новая терапия спинного мозга помогает парализованным пациентам снова начать ходить
Подробнее

2018-11-04
Наночастицы серебра за чистый воздух городов
Подробнее

2018-11-03
Квантовая телепортация и степени свободы света
Подробнее

2018-11-03
Однофотонные источники света высокой чистоты
Подробнее

2018-11-02
Перечень типов клеток по экспрессии генов и карта мозга
Подробнее

 

 

ТЕМЫ НОВОСТЕЙ: • Международные с РФ • Биосфера и человек • Микромир и химия

2018-10-14 (№ 121)
Биологи «взломали» систему фотосинтеза у фитопланктона
РОССИЯ и ГЕРМАНИЯ , 14 сентября ИНДИКАТОР Молекулярные биологи узнали, как цианобактерии защищаются от излишне яркого света, и научились обходить эту «систему безопасности», повысив скорость работы фотосинтеза и набора биомассы. Их выводы и возможные варианты применения «взломанных» белков были представлены в журнале Nature Communications.

«Белок ОСР и его "кузены" являются уникальными модульными конструкциями, способными выполнять различные функции в клетке — от переноса гидрофобных молекул аниоксидантов и до превращения энергии квантов света в тепло. К примеру, мы уже выяснили, как можно определять температуру на уровне микро- и наноразмерных объектов при помощи этого белка», — рассказал ведущий научный сотрудник кафедры биофизики биологического факультета МГУ Евгений Максимов.



За миллионы лет эволюции растения и цианобактерии научились захватывать фотоны солнечного света и использовать их энергию для сборки молекул питательных веществ. С одной стороны, этот процесс очень эффективен с точки зрения химии, а с другой — растения используют лишь 1-2% от общей энергии излучения Солнца. Учитывая нарастающий продовольственный кризис и нужду в «зеленых» источниках топлива, ученые в последние годы неоднократно пытались «улучшить» КПД растений.

Одним из главных ограничителей в эффективности фотосинтеза являются сами растения или микробы — когда они считают, что свет Солнца является чрезмерно ярким, их листья и клетки начинают рассеивать свет, превращая его в тепло, тем самым защищая себя от ожогов и чрезмерно сильного испарения воды.

Когда жара спадает, они возвращаются в нормальное состояние далеко не сразу, что заметно понижает эффективность фотосинтеза. В целом, как показывают расчеты ученых, этот «безопасный режим» снижает максимальную эффективность растений, растущих в средней полосе США или России, на 25-30%.

Как отмечает Максимов, ученые достаточно давно пытаются «взломать» эту систему защиты от перегрева и поменять ее работу таким образом, чтобы растение одновременно не убивало себя, и чтобы его урожайность стала намного более высокой. Некоторые успехи уже были достигнуты в этом направлении — год назад генетики из США создали ГМО-табак, растущий на четверть быстрее обычного.

Российские генетики и их коллеги из Германии попытались осуществить аналогичные изменения в клетках цианобактерий, набирающих биомассу значительно быстрее, чем растения, и считающихся сегодня одними из главных кандидатов на роль «колонизаторов» Марса и источников пищи и кислорода для путешествий в дальний космос.

Клетки этих микробов содержат в себе два белка, управляющих скоростью фотосинтеза — OCP и FRP. Первый играет роль «тормоза» — он поглощает частицы света и меняет свою структуру, мешая молекулам хлорофилла и другим компонентам фотосинтезирующих систем взаимодействовать со светом. Когда уровень освещения падает, молекулы OCP постепенно возвращаются в исходное состояние и скорость фотосинтеза начинает расти.

В свою очередь, FRP играет роль своеобразной газовой педали — он взаимодействует с молекулами OCP и ускоряет их переход в исходное состояние. Как это происходит и что именно меняет FRP, ученые не знали до настоящего времени.

Максимов и его коллеги проследили за взаимодействиями «активированной» формы OCP и различных версий FRP, выделенных из клеток нескольких видов цианобактерий, нагревая их до высоких или низких температур и подсвечивая их большими или малыми порциями света.

Выяснив, как именно соединяются эти белки, ученые создали несколько мутантных версий FRP, «запретив» его молекулам распадаться на половины, не способные нормально прикрепляться и взаимодействовать с OCP. Подобные версии FRP, по словам Максимова и его коллег, значительно ускорили работу фотосинтетических систем микроба и заставили их быстрее расти.

Дальнейшая оптимизация структуры FRP не только повысит скорость набора биомассы, но и позволит использовать фотосинтезирующих микробов и их белки для множества других целей, в том числе наблюдений за различными процессами внутри клеток человека и других млекопитающих.

Работа выполнена в рамках международного проекта, подержанного Российским научным фондом (РНФ) совместно с Немецким научно-исследовательским сообществом (DFG).

Источник

 

Сайты партнеры

 

 

Фантастика
детектив

 

 

Неоднозначное мироздание

 

costroma.k156.ru

 

 

 

(с) ООО "Новый город".
Создание сайта - веб студия Новый город