|
|
Все новости
(последние 10 )
|
новость в темах: • ЗЕМЛЯ • Биосфера • МИКРОМИР • Микробиология • Зарубежные
2020-04-21 (№ 19) Рис. 1. Гигантские вирусы. А — физические размеры и размеры генома гигантских вирусов в сравнении с «обычными» вирусами и с клетками. Б — изображения гигантских вирусов. Слева направо: мимивирус, пандоравирус, питовирус. Иллюстрации со страницы quantamagazine.org, с изменениями Принято считать, что вирусы — это самые мелкие и самые простые живые организмы. Понимание того, что вирусы — отнюдь не бактерии, когда-то возникло под влиянием двух фактов: оказалось, что они, во-первых, невидимы под световым микроскопом, и во-вторых, свободно проходят сквозь фильтры, предназначенные для задержки бактерий. И то, и другое объясняется тем, что вирусы — а точнее, их компактные расселительные формы (вирионы) — как правило, чрезвычайно малы по меркам обычной биологии, изучающей животных, растения или даже микробов. Но биология — наука, в которой из большинства правил есть исключения. В 2003 году были открыты гигантские вирусы. Строго говоря, они были известны биологам и раньше, но сначала их приняли за каких-то необычных бактерий. Гигантские вирусы, а их сейчас обнаружено довольно много, принадлежат к эволюционной ветви, которую называют крупными нуклеоцитоплазматическими ДНК-содержащими вирусами (nucleocytoplasmic large DNA viruses, сокращенно NCLDV). Все они паразиты эукариот, от амёб и водорослей до насекомых и позвоночных. С отдельными представителями NCLDV-вирусов человек, как выяснилось, сталкивался вообще издавна — это поксвирусы, то есть вирусы оспы. По «общевирусным» меркам вирус оспы велик и сложен, но некоторые его дальние родственники оказались гораздо крупнее (рис. 1). Например, у питовируса, паразитирующего в пресноводных амёбах, размер вириона достигает полутора микрон. Мало сказать, что такие вирусы сравнимы по размеру с бактериями — они просто-напросто в разы крупнее некоторых бактерий (например, каких-нибудь микоплазм). Более того, они крупнее некоторых одноклеточных эукариот! Их прекрасно видно под световым микроскопом, и бактериальные фильтры их не пропускают. Генетические параметры гигантских вирусов тоже поразили исследователей. У одного из самых крупных из них — пандоравируса, который тоже паразитирует в пресноводных амёбах — геном имеет размер почти 2,5 мегабазы (см. Геномы хвостатых амфибий с самого начала были большими, «Элементы», 24.06.2015) и содержит две с половиной тысячи белок-кодирующих генов. У ряда других вирусов размеры генома лишь ненамного ему уступают. Такие геномы превосходят как числом пар нуклеотидов, так и количеством генов геномы не только многих бактерий, но и некоторых эукариот. Таким образом, и по физическим размерам, и по величине генома гигантские вирусы уверенно перекрываются с клеточными организмами. Принципиальное отличие вирусов от клеток состоит не в размере. Оно в том, что вирус не может самостоятельно, без помощи другого живого организма, реализовать свою генетическую программу. У вирусов нет рибосом, молекулярных «машинок», синтезирующих белки по генетическим инструкциям, — этот процесс, как известно, называется трансляцией. Именно отсутствием рибосом любой вирус отличается от любой клетки. Характерно, что даже здесь приходится делать кое-какие оговорки: в 2017 году был описан гигантский вирус (он относится к семейству мимивирусов), у которого есть несколько десятков генов, кодирующих именно составные части аппарата трансляции: транспортные РНК, аминоацил-тРНК-синтетазы и еще некоторые белки (см. Обнаружены гигантские вирусы с расширенным репертуаром генов для синтеза белка, «Элементы», 10.04.2017). Но полного аппарата трансляции там нет. Если бы у какого-то вируса нашлись работоспособные рибосомы — это был бы уже не вирус. Зато у гигантских вирусов бывает много всего другого. Такой вирус не просто подключается к уже готовым клеточным механизмам — он активно перепрограммирует эти механизмы, превращая клетку (тут уже можно сказать «бывшую клетку») в некую принципиально новую структуру, которая даже и выглядеть-то может по-другому, но при этом остается живой и функционирующей. Только вот работает она теперь в интересах размножения вируса. У современных вирусологов такой составной организм называется «вироклеткой» (virocell). Превращение клетки в вироклетку — процесс, требующий сложного обеспечения, в том числе и на генетическом уровне. Группа ученых из Политехнического университета Виргинии (Virginia Tech) предприняла обширное исследование геномов гигантских вирусов, в том числе и тех, которые еще неизвестны вирусологам. Такие вещи сейчас возможны благодаря области науки, которая называется метагеномикой: она исследует ДНК, полученную прямо из природных сред (например, из воды или почвы), читая и анализируя набор генов сразу всех организмов, оставивших там свои генетические следы, — так называемый метагеном. Метагеномные исследования уже привели к множеству разнообразных открытий: например, благодаря метагеномике были открыты асгардархеи — крупная эволюционная ветвь архей, к которой относятся вероятные предки эукариот (см. Описан новый надтип архей, к которому относятся предки эукариот, «Элементы», 16.01.2017). Подавляющее большинство асгардархей до сих пор известно биологам только по метагеномным сборкам. Многие гигантские вирусы тоже были открыты именно в результате метагеномных исследований, которые сейчас вовсю продолжаются. В данном случае, однако, целью исследователей было не столько открытие новых разновидностей гигантских вирусов (хотя это тоже важный результат), сколько составление «коллективного портрета» этой группы, отображающего как можно больше генетических и физиологических свойств. Виргинские ученые исследовали 1545 метагеномов, из которых удалось «собрать» 501 новый вирусный геном. Генные последовательности, принадлежащие клеточным организмам или другим вирусам (не гигантским), естественно, игнорировались. Маркером фрагментов геномов, интересующих исследователей, были специфические гены, присущие только группе NCLDV. Большинство «нащупанных» таким методом новых гигантских вирусов живет в пресных водах или в море, хотя некоторые сборки относятся и к другим местообитаниям — например, к почве. Ничего удивительного тут нет, вирусы на Земле присутствуют всюду, где есть хоть что-то живое. Для всех выделенных последовательностей авторы построили общее филогенетическое древо, добавив туда и некоторое количество референтных геномов, принадлежащих вирусам, которые уже заведомо известны (рис. 2). На этом древе вновь открытые вирусы распределились по шести семействам: оказалось, что большинство из них относится к мимивирусам и фикоднавирусам, а некоторые — к иридовирусам, асфарвирусам, марсельвирусам или питовирусам. Здесь, между прочим, хорошо видно, какое место занимает в современной биологии эволюционный подход. Раньше биологи сначала изучали живые организмы по отдельности, описывая в деталях их устройство, и только потом отваживались строить гипотезы о филогенетических отношениях между ними. Построенное филогенетическое древо было высшим уровнем исследовательской работы, ее венцом. Теперь же построение такого древа стало рутинной технической процедурой, и исследование (во всяком случае, биоинформатическое) с нее начинается. Авторы сначала выясняют хотя бы в общих чертах, какие места на филогенетическим древе занимают открытые ими существа, а уж потом переходят к подробностям. Рис. 2. Преобладают в выборке, как видим, мимивирусы — больше половины всех геномов. «Ранние» и «поздние» фикоднавирусы — это на самом деле два разных семейства: группа фикоднавирусов оказалась сборной, но самостоятельных названий ветви, из которых она на самом деле состоит, еще не получили. Иллюстрация из обсуждаемой статьи в Nature Communications, с изменениями |