|
|
Все новости
(последние 10 )
|
новость в темах: • ЗЕМЛЯ • Биосфера • ЭВОЛЮЦИЯ • Палеонтология • Зарубежные
2020-05-07 (№ 29) Рис. 1. Обновленная синтрофная гипотеза. a — общая структура сообщества цианобактериального мата, где предположительно началось становление эукариот. b — стадия факультативного симбиоза трех партнеров: гетеротрофной асгардархеи, сульфатредуцирующей дельта-протеобактерии и альфа-протеобактерии, окисляющей сероводород (возможно, она была еще и фотосинтезирующей). c — стабилизация симбиоза за счет горизонтального переноса генов и переход его в эндосимбиоз, когда один из партнеров поселяется внутри другого, в данном случае — архея внутри дельта-протеобактерии. d — симбиоз с альфа-протеобактерией тоже принимает характер эндосимбиоза, одновременно у хозяина (то есть у дельта-протеобактерии) развивается система внутренних мембран. e — дельта-протеобактерия отказывается от восстановления сульфата и переходит к брожению, альфа-протеобактерия отказывается от окисления сульфидов и переходит к кислородному дыханию, а архея вообще навсегда теряет собственный энергетический обмен; кроме того, начинают формироваться ядерные поры. f — исчезновение архейной мембраны и окончательное формирование ядерных пор, приводящее к свойственному эукариотам разобщению процессов транскрипции и трансляции; на этой стадии перед нами полностью сформированная эукариотная клетка. Иллюстрация из обсуждаемой статьи в Nature Microbiology Альтернативы симбиоза Со времен совершённых в 1970-х годах великих молекулярно-биологических открытий Карла Вёзе (Carl Richard Woese; см. Эволюция по Вёзе) биологи стали делить все современные живые существа (кроме вирусов) на бактерий, архей и эукариот. К эукариотам относятся самые крупные и сложные организмы на Земле: многоклеточные животные, шляпочные грибы, бурые водоросли, высшие растения. Разумеется, эукариоты состоят из клеток, но эукариотная клетка негомологична клеткам бактерий и архей. Это гораздо более сложная структура, возникшая в результате объединения нескольких (как минимум двух) «элементарных клеток» и последующей пересборки их компонентов. Представления о том, как именно это произошло, сильно менялись по мере накопления новых сведений. Лет тридцать назад в биологии утвердилась классическая симбиогенетическая теория, связанная с именем Линн Маргулис (Lynn Margulis; см. Теория симбиогенеза 50 лет спустя: параллельной эукариотизации, скорее всего, не было, «Элементы», 22.11.2017). Предполагалось, что протоэукариоты, которые, вероятно, были сестринской группой по отношению к археям, сначала самостоятельно приобрели большинство эукариотных признаков — сложный подвижный цитоскелет, внутреннюю систему мембранных полостей, ядро и фагоцитоз, — а потом захватили и поселили у себя внутри альфа-протеобактерий, постепенно превратившихся в митохондрии. Однако чем дальше, тем больше появлялось фактов, противоречащих этой почтенной «маргулисовской» модели. Во-первых, эукариот, никогда не имевших митохондрий, по-видимому, не существует (см. Обнаружены одноклеточные организмы с ядром, но без митохондрий, «Элементы», 18.05.2016). Во-вторых, не подтверждается, что фагоцитоз появился раньше, чем митохондрии: как раз наоборот, многое указывает на то, что до союза с митохондриями фагоцитоз был бы невозможен (W. F. Martin et al., 2017. The physiology of phagocytosis in the context of mitochondrial origin). В-третьих, молекулярная систематика свидетельствует, что архейный предок эукариот был не таинственной и абстрактной «сестринской группой архей», а просто археей (см. Описан новый надтип архей, к которому относятся предки эукариот, «Элементы», 16.01.2017). И в-четвертых, недавно открытый современный представитель архей, близко родственный эукариотам, не проявляет никаких признаков переходного состояния: ни подвижного цитоскелета, ни внутренних мембранных полостей, ни ядра, ни фагоцитоза у него нет (см. Обнаружен живой представитель асгардархей, «Элементы», 22.08.2019). Все эти данные настолько серьезно изменили представления о происхождении эукариот, что в этой области теперь вполне можно говорить о смене парадигм. Как известно, само понятие «парадигма» предполагает существование семейства гипотез, которые основаны на общих предпосылках, но могут — и даже должны — конкурировать друг с другом и противоречить друг другу в отдельных утверждениях. Новая парадигма происхождения эукариот — не исключение. Она начала формироваться больше двадцати лет назад, когда фактов, подтверждающих новые взгляды, было еще немного, и уже тогда в ее рамках обсуждались разные эволюционные сценарии. В 1998 году Билл Мартин u и Миклош Мюллерu опубликовали водородную гипотезу происхождения эукариот (1998. The hydrogen hypothesis for the first eukaryote). Они предположили, что эукариоты возникли в результате тесной связи между двумя микроорганизмами: альфа-протеобактерией, которая питалась путем брожения, и метаногенной археей. Альфа-протеобактерия выделяла конечные продукты брожения, в том числе углекислоту и водород (см. Гидрогеносомы). А метаногенная архея, которая живет именно за счет восстановления углекислоты с помощью водорода, с радостью эти продукты захватывала. Ключевым фактором при этом был водород, который относительно редко встречается на Земле, но зато легко передается от клетки к клетке, потому что его молекулы очень маленькие. В свою очередь, метаногенная архея делилась с альфа-протеобактерией восстановленными органическими молекулами, которыми бродильщик может питаться. Для метаногенной археи этот союз был очень выгоден, поэтому она со всех сторон окружила альфа-протеобактерию своими выростами, чтобы увеличить поверхность контакта между клетками. В дальнейшем альфа-протеобактерия переключилась с брожения на кислородное дыхание (подобные способности есть у многих членов этого класса) и стала митохондрией. А метаболизм бывшей метаногенной археи перестроился таким образом, чтобы самостоятельно проводить частичное окисление восстановленных органических молекул, захваченных теперь уже из внешней среды, и передавать промежуточные продукты для окончательного окисления в митохондрию, получая взамен АТФ. Таким образом бывшая архея перестала нуждаться в водороде и заодно превратилась из автотрофного организма в гетеротрофный. Она-то, в соответствии с водородной гипотезой, и стала основой эукариотной клетки, образование которой, как видим, без участия предков митохондрий было бы немыслимо. В том же 1998 году Давид Морейра (David Moreira) и Пурификасьон Лопес-Гарсия опубликовали синтрофную гипотезу происхождения эукариот (D. Moreira, P. Lopez-Garcia, 1998. Symbiosis between methanogenic archaea and q-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis). Для Морейры и Лопес-Гарсии концепция Мартина и Мюллера была слишком простой. По их мнению, тесную связь с метаногенной археей образовала не альфа-протеобактерия, а дельта-протеобактерия: представители этого класса вступают в такие симбиозы и сейчас, и нет причин считать, что они не делали то же самое в древние времена. Разлагая органические молекулы, дельта-протеобактерия превращала их в углекислоту и водород, которыми щедро делилась с метаногенной археей. Последняя образовала для увеличения поверхности контакта выросты, между которыми многочисленные дельта-протеобактерии стали селиться. Потом эти дельта-протеобактерии слились друг с другом, потеряли генетический аппарат и стали цитоплазмой эукариотной клетки. А бывшая клетка метаногенной археи, которая свой генетический аппарат сохранила, стала ядром. До этого момента все участники симбиоза были анаэробными, то есть не использовали кислород в обмене веществ. Аэробной эукариотная клетка стала, только приобретя еще одного партнера — альфа-протеобактерию, будущую митохондрию. Как видим, гипотеза Лопес-Гарсии и Морейры предполагает, что партнеров, объединившихся в эукариотную клетку, было не два, а три. Проблема этой гипотезы в том, что она предсказывает решающий вклад дельта-протеобактерий в геном эукариот, которого на самом деле не наблюдается. У эукариот, правда, есть гены дельта-протеобактериального происхождения, но у них есть и гены, заимствованные еще от нескольких групп бактерий: альфа-протеобактерий, гамма-протеобактерий, грамположительных бактерий и других (см. E. V. Koonin, 2010. The origin and early evolution of eukaryotes in the light of phylogenomics). Никак нельзя сказать, что дельта-протеобактерии на этом фоне вне конкуренции. Но в любом случае эти данные свидетельствуют о том, что формирование эукариот происходило в очень плотном многовидовом архейно-бактериальном сообществе, где были все условия не только для симбиоза, но и для обмена генами (рис. 2). В этом Лопес-Гарсия и Морейра, безусловно, правы. Рис. 2. Водородная и синтрофная гипотезы. Сверху изображено исходное многовидовое сообщество. Ацетат, наряду с углекислотой, является как одним из продуктов брожения, так и одним из исходных реагентов метаногенеза. На схеме синтрофной гипотезы отражена идея авторов, что альфа-протеобактерия сначала была метанотрофной: она питалась метаном, который выделяла метаногенная архея, и превращала его в углекислоту, тем самым замыкая еще один контур симбиотического взаимодействия. На этой стадии все партнеры были анаэробными. Освоение аэробных условий произошло позже, после переключения альфа-протеобактерии на кислородный метаболизм. Все остальные пояснения — в тексте. Иллюстрация из статьи 1999. Metabolic symbiosis at the origin of eukaryotes |