Все новости
2019-02-18
Фиксация темной материи - теория и практика
Подробнее
2019-02-17
НАСА купит места Союзах, снимает песчаные реки Марса и звезды, ищет недостающую материю
Подробнее
2019-02-17
Роскосмос: Открытие спутника «Ломоносов», инфраструктура для «Енисея» «Хаябуса-2», Юпитер в объективе «Юноны»
Подробнее
2019-02-16
Нейросеть создаёт фото несуществующих людей
Подробнее
2019-02-15
Психология в замкнутом пространстве в виртуальном полете на Луну
Подробнее
2019-02-12
Материалы наиболее эффективные для преобразования тепла
Подробнее
2019-02-11
Осцилляторную нейронную сеть научили распознавать образы
Подробнее
2019-02-08
международная экспедиция в пещерную систему Мчишта-Акшаша (Абхазия)
Подробнее
2019-01-29
Большие возможности мини-мозгов из стволовых клеток
Подробнее
2019-01-24
В межзвёздной среде обнаружили предшественника аденина
Подробнее
|
ТЕМЫ НОВОСТЕЙ:
2019-01-29 (№ 216)
Большие возможности мини-мозгов из стволовых клеток
НОВОСИБИРСК, 29 января, АКАДЕМГОРОДОК (СО РАН)Если бы «Волшебника из страны Оз» писали в наше время, Страшила мог отправиться за мозгами прямиком в научно-исследовательский институт, ведь их уже выращивают в лабораторных условиях. В России всего несколько мест, где работают с новой технологией, одно из них — в новосибирском Академгородке.
Конечно, пока это не полноценные, а мини-мозги, или церебральные 3D-органоиды. «У нас они живут около трех месяцев и вырастают в среднем до 5 мм, при этом развиваются так же, как мозг человеческого эмбриона», — рассказывает младший научный сотрудник ФИЦ «Институт цитологии и генетики СО РАН» Татьяна Александровна Шнайдер. Молодая ученая вместе с коллегами уже около года культивирует церебральные органоиды в отделе молекулярных механизмов онтогенеза.
3D-органоиды — трехмерные ткани, которые по строению очень близки к отдельным частям настоящих органов. Условно говоря, это зачатки органов, выращенные из стволовых клеток. Первые органоиды получили в Австрии в 2013 году. С тех пор направление быстро развивается. Ученые уже создали, например, органоиды почек, печени, легких, сетчатки глаза.
С церебральными органоидами можно проводить эксперименты, которые до того относились к области фантастики. Мини-мозги проходят те же стадии развития, что и мозг зародыша, а значит, позволяют in vitro наблюдать за процессом нейрогенеза и за тем, как на него влияют различные факторы. Ведь развитие плода в утробе матери — это период, когда закладываются многие наследственные заболевания мозга и нервной системы. С настоящим мозгом таких опытов проводить нельзя: так как он надежно спрятан в черепной коробке, его невозможно изучать без того, чтобы нанести вред организму, в том числе и самому серому веществу.
На мини-мозгах изучают формирование таких тяжелых психических расстройств, как шизофрения и болезнь Альцгеймера. Также эти органоиды оказались полезными в исследованиях механизмов действия вируса Зика, пандемия которого случилась в 2014 году (если вирус переносит беременная женщина, он вызывает микроцефалию у плода). А еще с помощью церебральных органоидов пытаются найти ген, который делает нас людьми. Например, ученые сравнивали органоиды человека, орангутангов и шимпанзе. Есть работы по «обнеандерталиванию» мини-мозгов: в США и в Швеции, в группе биолога Сванте Паабо, вырастили органоиды с вариантами генов, которые отличаются у неандертальца и homo sapiens.
Пионер в области выращивания мозговых органоидов — профессор Мадлен Ланкастер (Madeline Lancaster) из Кембриджского университета в Великобритании. В ФИЦ ИЦиГ СО РАН мини-мозги начали выращивать, чтобы изучить влияние на развитие головного мозга гена CNTN6, кодирующего белок контактин 6: у некоторых людей с умственной отсталостью ген не работает. Исследователи предполагают, что результат этой «поломки» может проявляться на самой ранней, эмбриональной стадии жизни клеток. Если эксперименты подтвердятся, полученные данные можно будет использовать в пренатальном скрининге — тестировании потенциальных проблем со здоровьем у будущего ребенка.
«Мы, по сути, моделируем болезнь в лабораторных условиях. К этому пришли не сразу. Сначала пытались работать с однослойными структурами из выращенных нейронов: это относительно простая по сегодняшним меркам процедура, но насколько такие клетки соответствуют настоящим нейронам, не ясно. Затем трансплантировали человеческие клетки в головной мозг эмбрионов мышей, но всё это не дало нужного результата», — рассказывает генетик. Неудачи подтолкнули Татьяну Шнайдер к тому, чтобы попробовать получить трехмерный церебральный органоид: несколько месяцев было потрачено на подбор нужных условий для роста мини-мозгов, теперь технология успешно работает.
Всё начинается с того, что у человека берут небольшой образец верхних слоев кожи. Это безболезненная процедура, которая нужна, чтобы получить так называемую первичную культуру. Для создания органоидов в ФИЦ ИЦиГ СО РАН используют клетки кожи пациентов с умственной отсталостью, у которых есть повреждения в гене CNTN6. Из соединительной ткани кожи выделяют отдельные клетки — фибробласты. Их пересаживают в чашки, где они какое-то время растут и делятся. Затем наступает этап перепрограммирования клеток: специальные вирусы доставляют в ядра клеток белки, запускающие процесс превращения фибробластов в индуцированные плюрипотентные стволовые клетки (ИПС-клетки).
Из индуцированных плюрипотентных стволовых клеток можно получить любой тип клеток. Это полные аналоги эмбриональных стволовых клеток, которые есть у зародышей всех млекопитающих на ранней стадии развития (на стадии бластоцисты), и из которых потом формируются все органы и ткани.
Чтобы получить трехмерную структуру, ученые скатывают ИПС-клетки в шарики. После чего клетки начинают специализироваться, превращаясь в три зародышевых листка, совсем как это происходит у настоящего эмбриона: эктодерму, энтодерму и мезодерму. В данном случае ученых интересует именно эктодерма, из которой образуются нейроны, а потом формируется нервная система, в том числе и головной мозг. «Мы помогаем эктодермальным клеткам. Они получают преимущество по сравнению с другими в виде определенных компонентов культуральных сред (питательных растворов), поэтому начинают хорошо расти. Остальные либо гибнут, либо остаются совсем в небольшом количестве», — говорит Татьяна Шнайдер.
На ранних этапах развития головного мозга клетки должны «понимать», где у него «верх» и где «низ»: это помогает им мигрировать в нужном направлении и правильным образом взаимодействовать. Чтобы помочь клеткам органоида определить его границы, ученые используют специальный гель. Татьяна Шнайдер поясняет: «Основной компонент геля — это белки, которые концентрируются на поверхности органоидов, клетки их распознают как сигнал “верхней границы” (базальная мембрана), а внутри самого органоида спонтанно образуются “внутренние границы” (апикальная мембрана)».
После этих манипуляций емкости с мини-мозгами переносят на орбитальный шейкер. Это платформа, которая вращается по кругу с определенной скоростью для того, чтобы питательные вещества и кислород лучше проникали внутрь органоида. Устройство довольно простое, однако нужно правильно подбирать скорость вращения: если она будет слишком большой, мини-мозги могут повредиться, слишком медленной — к клеткам не поступит достаточно питания.
«Я работаю с 10—12 линиями ИПС-клеток одновременно. На каждую линию приходится планшет с 96 лунками, в каждой лунке сидит будущий органоид. То есть всего около тысячи потенциальных мини-мозгов, о которых нужно индивидуально заботиться, менять среду. Сложнее всего первые две недели, когда они особенно чувствительны. Чтобы их не повредить, всё нужно делать очень аккуратно», — говорит Татьяна Шнайдер.
Многие генетики пытаются улучшать мини-мозги при помощи разнообразных дополнений. Например, их сдавливали с двух сторон стеклышками, и эта сила способствовала формированию у них подобия мозговых извилин. Но главной проблемой церебральных органоидов является отсутствие кровеносных сосудов. Из-за этого их размер и время жизни ограничено: клетки, находящиеся глубоко внутри, не получают достаточного количества питательных веществ.
Могут ли мини-мозги мыслить? По мнению Татьяны Шнайдер, это маловероятно: «Мы мало что знаем, а точнее, практически ничего не знаем о внутриутробном мыслительном процессе человека. У нас нет инструментов, позволяющих проверить, мыслят ли органоиды. Из того, что доступно сегодня, — это померить электрофизиологические параметры нейронов. Недавно вышел препринт статьи зарубежных ученых про похожесть энцефалограммы мини-мозгов и недоношенных детей, но сделать из этих результатов какие-то выводы невозможно. Органов “выражения мыслей” у органоидов нет: написать, нарисовать или сказать они не могут. Но главное, в процесс мышления вовлечены несколько отделов мозга, а органоид обычно представляет собой только один отдел».
В новосибирском Академгородке занимаются органоидами кортекса (переднего мозга), а вообще в мире уже искусственно выращены и гиппокамп, мозжечок, различные ядра. Чаще всего это отдельные органоиды, поскольку для каждого типа нужны свои специальные условия (то есть разные химические соединения).
Работа выполняется при поддержке гранта РНФ 14-15-00772.
Александра Федосеева
Источник
|
Сайты партнеры
|