НОВОСТИ НАУКИ:Новая гипотеза происхождения эукариот
Информационный научно-популярный портал
НАУКА в РФ и за рубежом

глазами блогера (новая версия с 31.03.2020, заполняется по настроению, просмотров 1114684)

к архиву новостей с 01.09.2018 по 23.02.2019
на главную

РФ

Институты и конференции

Международные с РФ

Зарубежные
ВСЕ НОВОСТИ

  Последние добавления
Все новости
(последние 10 )


2021-10-13
Источники рекордной интенсивности ИК-излучения из иттербия
Подробнее

2021-10-13
Лечение лейкемии с помощью генетических и клеточных технологий
Подробнее

2021-10-13
Редкое поселение бронзового века в Нижегородской области
Подробнее

2021-10-13
Ученые объяснили явление «псевдощелевой фазы»
Подробнее

2021-04-05
Разработан уникальный пятикубитовый квантовый компьютер в России.
Подробнее

2021-04-05
Описаны субатомные взаимодействия внутри нейтронных звезд.
Подробнее

2021-04-05
Потепление Байкала «помогает» рачкам-вселенцам вытеснять аборигенов
Подробнее

2021-04-05
Ученые разработали квантовый алгоритм для рекордно точного измерения магнитных полей
Подробнее

2021-04-05
Изменение климата может увеличить популяцию короеда-типографа
Подробнее

2021-04-05
В Рязани протестировали систему обработки снимков спутника «Арктика-М»
Подробнее

 

 

 

новость в темах: • ЗЕМЛЯ • Биосфера • ЭВОЛЮЦИЯ • Палеонтология • Зарубежные

2020-05-07 (№ 29)
Новая гипотеза происхождения эукариот

Локализация происходящего и источник в СМИ:
Испания и Франция, портал «Элементы»

Известные испанские (работающие во Франции) микробиологи Пурификасьон Лопес-Гарсия и Давид Морейра предложили новую гипотезу происхождения эукариот, которая называется обновленной синтрофной гипотезой или гипотезой HS-синтрофии. Она учитывает данные, полученные в результате прошлогоднего открытия живого представителя асгардархей. Согласно гипотезе HS-синтрофии, возникновение эукариот было результатом метаболического симбиоза между тремя партнерами: асгардархеей, дельта-протеобактерией и альфа-протеобактерией, при этом на первых стадиях симбиоза имел большое значение обмен серы. В конце концов асгардархея образовала содержимое ядра, дельта-протеобактерия — основу цитоплазмы, а альфа-протеобактерия — митохондрии.

Рис. 1. Обновленная синтрофная гипотеза. a — общая структура сообщества цианобактериального мата, где предположительно началось становление эукариот. b — стадия факультативного симбиоза трех партнеров: гетеротрофной асгардархеи, сульфатредуцирующей дельта-протеобактерии и альфа-протеобактерии, окисляющей сероводород (возможно, она была еще и фотосинтезирующей). c — стабилизация симбиоза за счет горизонтального переноса генов и переход его в эндосимбиоз, когда один из партнеров поселяется внутри другого, в данном случае — архея внутри дельта-протеобактерии. d — симбиоз с альфа-протеобактерией тоже принимает характер эндосимбиоза, одновременно у хозяина (то есть у дельта-протеобактерии) развивается система внутренних мембран. e — дельта-протеобактерия отказывается от восстановления сульфата и переходит к брожению, альфа-протеобактерия отказывается от окисления сульфидов и переходит к кислородному дыханию, а архея вообще навсегда теряет собственный энергетический обмен; кроме того, начинают формироваться ядерные поры. f — исчезновение архейной мембраны и окончательное формирование ядерных пор, приводящее к свойственному эукариотам разобщению процессов транскрипции и трансляции; на этой стадии перед нами полностью сформированная эукариотная клетка. Иллюстрация из обсуждаемой статьи в Nature Microbiology


Альтернативы симбиоза

Со времен совершённых в 1970-х годах великих молекулярно-биологических открытий Карла Вёзе (Carl Richard Woese; см. Эволюция по Вёзе) биологи стали делить все современные живые существа (кроме вирусов) на бактерий, архей и эукариот. К эукариотам относятся самые крупные и сложные организмы на Земле: многоклеточные животные, шляпочные грибы, бурые водоросли, высшие растения. Разумеется, эукариоты состоят из клеток, но эукариотная клетка негомологична клеткам бактерий и архей. Это гораздо более сложная структура, возникшая в результате объединения нескольких (как минимум двух) «элементарных клеток» и последующей пересборки их компонентов.

Представления о том, как именно это произошло, сильно менялись по мере накопления новых сведений. Лет тридцать назад в биологии утвердилась классическая симбиогенетическая теория, связанная с именем Линн Маргулис (Lynn Margulis; см. Теория симбиогенеза 50 лет спустя: параллельной эукариотизации, скорее всего, не было, «Элементы», 22.11.2017). Предполагалось, что протоэукариоты, которые, вероятно, были сестринской группой по отношению к археям, сначала самостоятельно приобрели большинство эукариотных признаков — сложный подвижный цитоскелет, внутреннюю систему мембранных полостей, ядро и фагоцитоз, — а потом захватили и поселили у себя внутри альфа-протеобактерий, постепенно превратившихся в митохондрии.

Однако чем дальше, тем больше появлялось фактов, противоречащих этой почтенной «маргулисовской» модели. Во-первых, эукариот, никогда не имевших митохондрий, по-видимому, не существует (см. Обнаружены одноклеточные организмы с ядром, но без митохондрий, «Элементы», 18.05.2016). Во-вторых, не подтверждается, что фагоцитоз появился раньше, чем митохондрии: как раз наоборот, многое указывает на то, что до союза с митохондриями фагоцитоз был бы невозможен (W. F. Martin et al., 2017. The physiology of phagocytosis in the context of mitochondrial origin). В-третьих, молекулярная систематика свидетельствует, что архейный предок эукариот был не таинственной и абстрактной «сестринской группой архей», а просто археей (см. Описан новый надтип архей, к которому относятся предки эукариот, «Элементы», 16.01.2017). И в-четвертых, недавно открытый современный представитель архей, близко родственный эукариотам, не проявляет никаких признаков переходного состояния: ни подвижного цитоскелета, ни внутренних мембранных полостей, ни ядра, ни фагоцитоза у него нет (см. Обнаружен живой представитель асгардархей, «Элементы», 22.08.2019).

Все эти данные настолько серьезно изменили представления о происхождении эукариот, что в этой области теперь вполне можно говорить о смене парадигм. Как известно, само понятие «парадигма» предполагает существование семейства гипотез, которые основаны на общих предпосылках, но могут — и даже должны — конкурировать друг с другом и противоречить друг другу в отдельных утверждениях. Новая парадигма происхождения эукариот — не исключение. Она начала формироваться больше двадцати лет назад, когда фактов, подтверждающих новые взгляды, было еще немного, и уже тогда в ее рамках обсуждались разные эволюционные сценарии.

В 1998 году Билл Мартин u и Миклош Мюллерu опубликовали водородную гипотезу происхождения эукариот (1998. The hydrogen hypothesis for the first eukaryote). Они предположили, что эукариоты возникли в результате тесной связи между двумя микроорганизмами: альфа-протеобактерией, которая питалась путем брожения, и метаногенной археей. Альфа-протеобактерия выделяла конечные продукты брожения, в том числе углекислоту и водород (см. Гидрогеносомы). А метаногенная архея, которая живет именно за счет восстановления углекислоты с помощью водорода, с радостью эти продукты захватывала. Ключевым фактором при этом был водород, который относительно редко встречается на Земле, но зато легко передается от клетки к клетке, потому что его молекулы очень маленькие. В свою очередь, метаногенная архея делилась с альфа-протеобактерией восстановленными органическими молекулами, которыми бродильщик может питаться. Для метаногенной археи этот союз был очень выгоден, поэтому она со всех сторон окружила альфа-протеобактерию своими выростами, чтобы увеличить поверхность контакта между клетками. В дальнейшем альфа-протеобактерия переключилась с брожения на кислородное дыхание (подобные способности есть у многих членов этого класса) и стала митохондрией. А метаболизм бывшей метаногенной археи перестроился таким образом, чтобы самостоятельно проводить частичное окисление восстановленных органических молекул, захваченных теперь уже из внешней среды, и передавать промежуточные продукты для окончательного окисления в митохондрию, получая взамен АТФ. Таким образом бывшая архея перестала нуждаться в водороде и заодно превратилась из автотрофного организма в гетеротрофный. Она-то, в соответствии с водородной гипотезой, и стала основой эукариотной клетки, образование которой, как видим, без участия предков митохондрий было бы немыслимо.

В том же 1998 году Давид Морейра (David Moreira) и Пурификасьон Лопес-Гарсия опубликовали синтрофную гипотезу происхождения эукариот (D. Moreira, P. Lopez-Garcia, 1998. Symbiosis between methanogenic archaea and q-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis). Для Морейры и Лопес-Гарсии концепция Мартина и Мюллера была слишком простой. По их мнению, тесную связь с метаногенной археей образовала не альфа-протеобактерия, а дельта-протеобактерия: представители этого класса вступают в такие симбиозы и сейчас, и нет причин считать, что они не делали то же самое в древние времена. Разлагая органические молекулы, дельта-протеобактерия превращала их в углекислоту и водород, которыми щедро делилась с метаногенной археей. Последняя образовала для увеличения поверхности контакта выросты, между которыми многочисленные дельта-протеобактерии стали селиться. Потом эти дельта-протеобактерии слились друг с другом, потеряли генетический аппарат и стали цитоплазмой эукариотной клетки. А бывшая клетка метаногенной археи, которая свой генетический аппарат сохранила, стала ядром. До этого момента все участники симбиоза были анаэробными, то есть не использовали кислород в обмене веществ. Аэробной эукариотная клетка стала, только приобретя еще одного партнера — альфа-протеобактерию, будущую митохондрию.

Как видим, гипотеза Лопес-Гарсии и Морейры предполагает, что партнеров, объединившихся в эукариотную клетку, было не два, а три. Проблема этой гипотезы в том, что она предсказывает решающий вклад дельта-протеобактерий в геном эукариот, которого на самом деле не наблюдается. У эукариот, правда, есть гены дельта-протеобактериального происхождения, но у них есть и гены, заимствованные еще от нескольких групп бактерий: альфа-протеобактерий, гамма-протеобактерий, грамположительных бактерий и других (см. E. V. Koonin, 2010. The origin and early evolution of eukaryotes in the light of phylogenomics). Никак нельзя сказать, что дельта-протеобактерии на этом фоне вне конкуренции. Но в любом случае эти данные свидетельствуют о том, что формирование эукариот происходило в очень плотном многовидовом архейно-бактериальном сообществе, где были все условия не только для симбиоза, но и для обмена генами (рис. 2). В этом Лопес-Гарсия и Морейра, безусловно, правы.

Рис. 2. Водородная и синтрофная гипотезы. Сверху изображено исходное многовидовое сообщество. Ацетат, наряду с углекислотой, является как одним из продуктов брожения, так и одним из исходных реагентов метаногенеза. На схеме синтрофной гипотезы отражена идея авторов, что альфа-протеобактерия сначала была метанотрофной: она питалась метаном, который выделяла метаногенная архея, и превращала его в углекислоту, тем самым замыкая еще один контур симбиотического взаимодействия. На этой стадии все партнеры были анаэробными. Освоение аэробных условий произошло позже, после переключения альфа-протеобактерии на кислородный метаболизм. Все остальные пояснения — в тексте. Иллюстрация из статьи 1999. Metabolic symbiosis at the origin of eukaryotes



ТВОЙ НОВЫЙ ГОРОД Кроме того, среди дельта-протеобактерий много сульфатредукторов, которые в процессе получения энергии превращают сульфаты в сульфиды. Как известно, в состав этих молекул входит сера. Большинство всех сульфатредуцирующих микроорганизмов относится именно к дельта-протеобактериям. Лопес-Гарсия и Морейра, конечно, знали это, но в первоначальной версии их гипотезы обмен серы не сыграл никакой роли — эта деталь осталась «лишней». Тем не менее они сразу же отметили, что в современной природе самый распространенный вариант архейно-бактериального симбиоза — это симбиоз метаногенных архей с бактериями-сульфатредукторами (P. López-Garcı́a, D. Moreira, 1999. Metabolic symbiosis at the origin of eukaryotes). Запомним эту подробность.

Синтрофная парадигма

Водородная и синтрофная гипотезы разрабатывались совершенно независимо (до выхода публикаций их авторы ничего не знали об идеях друг друга), но оказались поразительно похожими. Они сходятся как минимум в четырех пунктах:
1) союз предков эукариот возник не через пожирание одного партнера другим (фагоцитоз), а через мирное сожительство, сопровождавшееся обменом продуктами метаболизма (синтрофия);
2) ключевым метаболитом, на котором этот союз в первую очередь держался, был водород;
3) в ходе развития симбиоза один партнер охватывал другого своими выростами;
4) среди партнеров была метаногенная архея.

После открытия реальных современных архейных родственников эукариот все четыре тезиса подтвердились — но подтвердились неожиданным образом (H. Imachi et al., 2020. Isolation of an archaeon at the prokaryote–eukaryote interface). Можно предположить, что при виде этих данных авторы и водородной, и синтрофной гипотез пережили крайне противоречивые чувства. С одной стороны, в природе найдено реальное синтрофное сожительство трех партнеров, два из которых — это... метаногенная архея и сульфатредуцирующая дельта-протеобактерия! С другой же стороны, родичи эукариот там представлены вовсе не метаногенной археей (близкое родство этой группы с эукариотами вообще не подтверждается), а третьим партнером — локиархеей. И вот она-то преподнесла нашим авторам сюрпризы. Во-первых, она оказалась не автотрофным метаногеном, а гетеротрофным бродильщиком, питающимся аминокислотами. И во-вторых, она оказалась не акцептором водорода, а его донором (при таком типе метаболизма иначе и быть не может). Как в старом анекдоте: не в покер, а на скачках, и не выиграл, а проиграл, а в остальном все верно.

В такой сложной ситуации бывает очень полезно, условно говоря, перейти на один уровень вверх, чтобы охватить пространство логических возможностей как можно полнее (рис. 3). Материала для этого хватает: в последние два десятилетия наука, мягко говоря, не стояла на месте. В обзоре, вышедшем в Nature в апреле 2020 года, уже знакомые нам Пурификасьон Лопес-Гарсия и Давид Морейра насчитывают минимум семь гипотез происхождения эукариот, основанных на синтрофии или метаболическом симбиозе (это одно и то же).

Продолжение и приведенные изображения в крупном виде - источнике

Источник - Портал «Элементы»

 

 

   

 

Сайты партнеры

 

Мир реки времени


От истории
к современности



mir.k156.ru

Фантастика
детектив

shar.k156.ru

 

Неоднозначное
мироздание

 

История Костромы

 

costroma.k156.ru

 

 

 

 

СВЕЖИЕ НОВОСТИ ИЗ ВСЕХ ТЕМ (последние 20):

 
 

 

 



куратор и автор скрипта Шаройко Лилия Витальевна, все тексты принадлежат их авторам, на каждый приведены ссылки


Основные проекты портала k156.ru и дружественные ресурсы

ЗАКУЛИСЬЕ - новости всех доменов
Астрофизика, история России и мира Археологические культуры, стоянки, находки История Костромы, России и мира. Книги издательства Инфопресс  - лингвистика народов России, квантовая физика, архитектура, нумизматика Новости науки РФ глазами блогера Фантастический детектив на базе астрофизики и нейрофизиологии Философия, Концепция реальности, лекции ученых с навигаторами Форум палеонтологов, обсуждение эволюции от начала вселенной до искуственного интеллекта

forum.k156.ru

mir.k156.ru

arh.k156.ru

costroma.k156.ru

k156.ru/index2.php

shar.k156.ru

https://paleoforum.ru



На главную сайта k156.ru (каталог с описанием всех доменов)